Parallel Programming with Matrix Distributed Processing
نویسنده
چکیده
Matrix Distributed Processing (MDP) is a C++ library for fast development of efficient parallel algorithms. MDP enables programmers to focus on algorithms, while parallelization is dealt with automatically and transparently. Here we present a brief overview of MDP and examples of applications in Computer Science (Cellular Automata), Engineering (PDE Solver) and Physics (Ising Model).
منابع مشابه
A bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics
This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...
متن کاملA fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملLocality-aware parallel block-sparse matrix-matrix multiplication using the Chunks and Tasks programming model
We present a library for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. By using a quadtree matrix representation data locality is exploited without any prior information about the matrix sparsity pattern. A distributed quadtree matrix representation is straightforward to implement due to our recent development of the Chunks and Tasks programming model [Paral...
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملOptimizing Skeletal Stream Processing for Divide and Conquer
Algorithmic skeletons intend to simplify parallel programming by providing recurring forms of program structure as predefined components. We present a new distributed task parallel skeleton for a very general class of divide and conquer algorithms for MIMD machines with distributed memory. Our approach combines skeletal internal task parallelism with stream parallelism. This approach is compare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/hep-lat/0505005 شماره
صفحات -
تاریخ انتشار 2005